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We have obtained an analytic expression for the reflectivity R (6,1) of polarized neutrons from a su-
perconductor in the Meissner state, where A is the magnetic-field penetration depth and 6 is the incident
angle of the neutron beam. The result is derived as an exact solution of the 1D Schrddinger equation in
the continuum limit, with an interaction potential V¥ (x)= VytuH[exp(—x/A)—1], where Vy is a
constant representing the nuclear interaction, u is the neutron magnetic moment, and H is the applied
magnetic field. The solution for R*(6,A) reveals surprising features in its A dependence that have not
been discovered in previous numerical studies. In particular, R ~(6,A) displays an oscillatory depen-
dence on A within a narrow angular range immediately above the total reflection angle (6% 6 ), instead
of a monotonic dependence as inferred from earlier numerical calculations. The solution also reveals
that complete transmission for the down-spin state [R ~(6,A)=0] may occur when A and H satisfy cer-
tain conditions. In addition to the analytic expression of the reflectivity for a semi-infinite sample, we
have also obtained the reflectivity R (6,A) from a thick superconducting film where the magnetic field
can penetrate from both sides. In the case of a free-standing film of which the two surfaces are identical,
we have simply R T=2R*/(1+R™*), and therefore all the interesting features of the exact solution R +
persist in R *. Finally, the exact solution can also be applied to other systems where the scattering po-
tential has an exponential dependence with distance, such as for the magnetization at the surface of a fer-
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romagnet.

I. INTRODUCTION

In the last decade polarized neutron reflectometry has
been developed into a new technique to measure the
magnetic-field penetration depth A in superconduc-
tors.! 8 The merit of the method lies in the fact that it
provides an absolute measurement of A rather than pro-
viding a relative measure as a function of temperature,
and therefore neutron reflectometry has the potential to
make a model-independent determination of A(T). In
1984, Felcher et al.! demonstrated in an experiment on
superconducting niobium that polarized neutron
reflectivity R+ could be used to measure the magnetic
penetration depth. Subsequent experiments were carried
out on pure lead and lead-bismuth films.%> Following
the advent of high-T, superconductors, measurements on
YBa,Cu;0,_, samples were also reported.>* Recently,
more investigations in the Nb system were published.®’
All these experiments demonstrated that spin-polarized
neutron reflectivity is sensitive to the screening of the
magnetic field inside a superconductor.

To calculate the expected neutron reflectivity the
scattering theory is often cast in the form of a neutron
“optical potential,” where the three-dimensional (3D)
periodic nuclear scattering potential is approximated by
the average nuclear potential of a continuum. This pro-
cedure is identical to the description of an electromagnet-
ic wave in a material, where the 3D distribution of elec-
trons is replaced by an optical index of refraction. Gen-
erally it is an excellent approximation when the wave-
length is large compared to the interatomic spacings.
Then for the case of neutrons impinging on a flat surface
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(usually at glancing angles) the scattering can be de-
scribed by a one-dimensional (1D) Schrodinger equation.
In optical terms, the index of refraction for the magnetic
and nuclear scattering is given by’
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where b is the average coherent nuclear scattering ampli-
tude, N is the number density, p is the magnetic scatter-
ing amplitude, A, is the neutron wavelength, and the =
refers to incident neutrons with spin up or spin down.
Equation (1) is an excellent approximation for describing
neutron scattering from a surface in the vicinity of the
critical angle 6, given by
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Below 6, we have total external reflection of the neu-
trons, and the reflectivity is unity. For thermal and cold
neutrons these angles are quite small; for example, for the
nuclear scattering at a neutron wavelength of A, =2.35
A, 6,=0.151° for niobium and 0.167° for YBa,Cu,;0,,
and hence we may make the approximation as in the
right-hand side of Eq. (2). For very cold and ultracold
neutrons, on the other hand, the angle is not small and
the full expression must be used.

For the magnetic interaction the field inside the super-
conductor is assumed to have the familiar (London) ex-
ponential decrease with distance below the first critical
field H,;'°
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B(x)=Hexp(—x /1) . (3)

This local-interaction form for the screening is charac-
teristic of type-II superconductors in their Meissner state,
where A is related to the London penetration depth A; in
various ways depending on its size relative to the super-
conducting coherent length &, and the electron’s normal-
state mean free path ! due to impurities and defects.!!
Since the values for H,, are typically quite small, the
magnetic interaction —u-B that arises from Eq. (3) is
small compared to the nuclear interaction, and hence
below T, the ratio of the spin-dependent reflectivities
Rt /R~ deviates significantly from unity only in the re-
gime just above the critical angle. This is just the regime
where the continuum approximation works very well.
Typically the deviation was then calculated by numerical-
ly solving the optical equation with a refractive index"?

‘ , @

where ¢=2mum /h?*=2.31X10"1° A720e"!, and the
value of A was obtained by fitting the model calculation
for the reflectivity to the experimental data.

Due to the numerical nature of the calculations, details
of the A dependence of the reflectivity R * were not ana-
lyzed explicitly. The only analytical expression has been
obtained in the regime far away from total reflection, us-
ing the Born approximation. »? This expression was then
extrapolated to the region of the critical angle as an at-
tempt to theoretically analyze the A dependence of R *.
From such analysis it was believed that AR=R " —R "~
at the critical angle was the same irrespective of the
shape of B (x), and only for larger angles of incidence did
the shape of the magnetic profile become important. It
was also believed that the effect of a smoother variation
of B(x) was to decrease AR. However, in spite of the
paucity of analytical results, the often successful quanti-
tative fits of the numerical calculations to the experimen-
tal data provided a competitive technique to measure the
magnetic-field penetration depth A in superconductors.

In this paper we use the same basic approach of calcu-
lating the neutron reflectivity in terms of an optical po-
tential. We have solved the 1D Schrddinger equation,
and found an analytical solution for R*(6,)1) which is
valid throughout the entire angular range of interest. We
study some of the features of this solution. In addition,
we have obtained an analytic expression for the
reflectivity from a thick film, R i((9,7&), which relates to
that from a semi-infinite sample, R*(6,7), in a simple
and elegant way. This makes the theoretical predictions
easier to compare with experiment. We note that prelim-
inary results of this work have been reported earlier.®
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II. CALCULATION OF R £(6,1)

We start with the Schrodinger equation describing a
neutron incident on a plane-surfaced and semi-infinite su-
perconducting sample placed in an applied magnetic field
H;

—(#/2m )V W (x)+ V(x)P(x)=E¥(x) . 5
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If we approximate the periodic arrangement of nuclei in
the sample by a homogeneous continuum, then we have
translational symmetry in the yz plane and only the x
component of k, k, =k sin6, can change. Hence we have
a classic quantum-textbook 1D problem; to the incoming
neutron the sample is represented as a simple potential
barrier which consists of the neutron’s nuclear interac-
tion with the average nuclear scattering potential and its
magnetic interaction with the magnetic inductance in the
sample. Thus we have

V(x)=Vy(x)+Vy(x) (6)

with the nuclear and magnetic potentials given by

Vylx)= 2 Nb=Vy
, x>0 (7
Vy(x)=—p-Hexp _I]
and
Vy(x)=0
Vylx)=—pH | x <0. (8)

This is of course an idealized potential, where we neglect
such processes as nuclear absorption, incoherent and
phonon scatterings, surface roughness, etc. Since the po-
tential for x <0 is a constant, one can make it zero and
take the change of the potential at the surface as an
effective potential for x > 0:

VE(x)=Vytu-Hlexp(—x /A)—1], 9

where the * refers to incident neutrons with spin up or
spin down. V*(x) is primarily a potential step, since the
magnetic interaction for fields below H_, is typically two
orders of magnitude smaller. When 6 is small enough
such that #2k2/2m is below this potential step the neu-
tron is unable to overcome the barrier and therefore is to-
tally reflected. When 6 exceeds the critical angle then the
neutron has a probability for both reflection and
transmission. The reflectivity R *(6) depends of course
on the details of the magnetic term in V¥ (x), particularly
when 6 is near the critical angle, and hence a measure-
ment of R ¥(0) can serve to determine the magnetic-field
penetration depth A. We note that for thermal and cold
neutrons 6, is typically below 1°, and this is the conven-
tional regime for neutron reflectometers, > 1% while for
very cold neutrons 6, can be much larger than 1°, and for
ultracold neutrons 6,—m/2.!> The calculation we
present below applies to all these cases.
We define

uy=4mNb (10)
and

_ | t2uHm /#*=+4wcH >0 for spin up

—2uHm /#*=—47cH <0 for spin down , (11

Up

where ¢ =27um /h2. Then the Schrédinger equation be-
comes
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VAW(x)+ (k2 —uy+upy[1—exp(—x /A)]}¥(x)=0,
(12)
where

k'=(k2—uy)'% . (13)

We have defined k'’ to emphasize the point that the kinet-
ic energy of the incoming neutrons might be spin depen-
dent depending on the way the polarized neutrons are
prepared. If the external magnetic field changes gradual-
ly from (essentially) zero to H over a macroscopic dis-
tance, the neutrons are not scattered at all but only adia-
batically tuned into a different energy. For thermal or
cold neutrons k'=k to a very good approximation; for
example, with A,=2.35 A and H=500 Oe we have
k2=7.15 A% and |u,|=1.45X10"% A~2 Therefore
we may neglect the difference between k and k’. In the
case of ultracold neutrons, on the other hand, the kinetic
and potential energies are comparable, and in this case
one can simply replace k by k' if necessary for each spin
state as given in Eq. (11). Hence, we will drop the dis-
tinction between k and k' from further discussion.

Due to the translational symmetry of the scattering po-
tential in both y and z directions near the sample surface,
Eq. (12) can be reduced to a 1D equation by the standard
procedure of separating variables. We have

2
AW |2 —u(x)]W(x)=0 (14)
dx
with
0, x<0
ulx)= (15)

uy—upy[l—exp(—x/A)], x=0.

Figure 1 shows sketches of u(x) for spin-up and spin-
down neutrons.
In the region x =0 we define

KE+(k§—uN+uM)1/2 . (16)
Then Eq. (14) becomes

2

d‘yf(zx)-k[xz—-uMexp(—x/M]\l’(x):O . (17)

dx

Letting

Y(x)=d(x)explikx) , (18)
we obtain an equation for ®(x ):
d*®(x) . d®d(x)

— —x /M)®(x)=0 .
Ix? +2ik o upexp(—x /A)P(x)=0 (19)

The expected asymptotic behavior that W(x)—¢ exp(ikx)
as x —+ o imposes the boundary condition on P(x)
that ®(x)—t as x — + o, where ¢ is a constant, which
turns out to be the transmission amplitude. Changing
variables to

E=Nuyexp(—x /M), (20)

where A is positive definite, we have
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d*® . .. dd
e +(1—2ikA) dé

Now we can make a series expansion of ® in &; we find
that the solution to Eq. (21) is

D=1,F,(1—2ikA;E) , (22)

3 ®=0. @1)

where ¢ is an undetermined coefficient and F, is a gen-
eralized hypergeometric function defined as'*

_t® Daz"
oFrla2)= 3 i (3)

n=0
for all z. The solution of W(x ) in the x = 0 region is then
W(x)=toF[1—2ikA;A%uypexp(—x /A) Jexplicx) . (24)

We need a minimum set of relations pertaining to the
generalized hypergeometric function (¥, for our discus-
sion. Several relations for special values of ,F,; can be
easily derived from Eq. (23):

oF1(a;0)=1, (25a)
oF1(1;2)=04(2]2]V?) ifz<0, (25b)
oF1(1;2)=1,(22'?) ifz>0, (25¢)
J0(2IZ|1/2) .
0F1(2;Z)=-—|Zl—/2—_ ifz<0, (25d)
u(x)
4
Uy +
Ul
0 . > X
0 A
(a) spin up
u (x)
Y
ugHly ) -
uy
0 ! + X
0 A

(b) spin down

FIG. 1. Sketch of the interaction potential u (x) for spin-up
neutrons (a) and spin-down neutrons (b), defined by Eq. (15).
The subscripts N and M indicate nuclear and magnetic interac-
tions, respectively. Note that uy and |u,,| have not been drawn
to scale here, as |u,,| is typically two orders of magnitude small-
er than uy.
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Iy(2z'?)

0F1(2;z)=—1—/2, ifzZ0, (25¢)
z

where J,, is the nth-order Bessel function and I, the nth-

order modified Bessel function. The first-order partial

derivatives of (F'| (a;z) with respect to a and z are

C )= F (s
oFi1laz)= aaoFl(a,z)

_ e Ta)zt "1
=T 2 Tatmml 2, atm (268
OF',,Z(a;z)E%oFl(a;z)=%OF,(OH-l;z). (26b)

Now let us consider the boundary conditions. As
x—+ o, £—0, and we have F (1—2ikA;§)—1 and

]
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hence ®(x )—t. At the boundary of x =0, both W(x) and
d¥/dx must be continuous. We denote r as the
reflection amplitude, and normalize the incoming wave to
1, then the reflectivity is given by

R=|r|?, 27
and the boundary conditions at x =0 then become

1+r=1toF;(1—2ikA;A%uy,) (28)
and

ik, (1—r)=ixtoF (1 —2ikk;A%u,,)
Auy,

"~ M1—2ikh)

Solving r and ¢ from Egs. (28) and (29) we obtain

(kyy — 1M1 —2ikA)oF (1= 2ikch; Aupg ) — i N upgoF 1 (2 —2i kA AUy )

(ky +1OMT—2ikA)F (1= 2ikA; APupg )+ iA2upgoF 1 (2—2ikA; A% uy,)

2k A(1—2ikA)

(30a)

(k, + A1 —2ikA)oF (1= 2ikA; A 200 ) +iA2UpgoF 1 (2— 20kA; A %0,,)

and, finally, the reflectivity

(ky — 1ML —=2ikA)oF (1= 20 kA M upg ) — i N upgoF 1 (2= 2ikch; APy )

(30b)

2

(ky FH1OMT =20k A ) F 1 (1= 2i kA APy ) +i N upgoF | (2—2i kA APy )

We note that since k, =(27 /A, )sinf, where A, is the
neutron’s wavelength, the reflectivity R can be regarded
as a function of A, for a fixed incident angle 6, or as a
function of 0 for a selected wavelength. The former is
most appropriate for pulsed neutron sources, while the
latter is the practice at reactor-type neutron sources. As
our particular interest is reflectivity measurements at a
fixed wavelength we will choose 0 as the independent
variable in the following discussions.

II1I. DISCUSSION OF THE SOLUTION FOR R £(6,1)

A. General behavior

First we set the external magnetic field to zero
(us,=0), so that the reflectivity [Eq. (31)] reduces to
2

k,—«
, (32)

k., +x

R =

which is the familiar textbook solution of the 1D
Schrodinger equation with a simple step potential. Note
that R=1 [Eq. (32)] when k, <u}/? so k, =k sin6,
=u,/? defines the critical angle for total reflection, as in
Eq. (2) with p =0.

Now we take the case when the external magnetic field
H is nonzero, but below H,;, so that the sample is in its
Meissner state; H is typically on the order of a few hun-
dred oersteds or less. The region of total reflection
(R =1) becomes k, <(uy—uy)'"% To see this we note

(31

[

from Eq. (16) that « is now pure imaginary in this regime,
so we may write k=IK where ¥ is real and K=0. Then
the reflectivity [Eq. (31)] can be simplified as

2
— .fj::% , (33)
where
A=k, AM1+2RA)oF (14 28A; A %u,,) (34)
and
B =RA(14+2KA)F (14 2A%; A2u,, )
+ AU pgoF 1 (24 2RA; AUy, ) (35)

Since A4 and B are both real functions, R =1. However,
defining k., =k sinf, =(uy —u,,)!’?, the critical angle is
now spin dependent, since u,, is spin dependent [Eq.
(11)]. Hence we have two different critical angles for
spin-up (+ ) and spin-down ( —) neutrons, respectively:

n

6F=sin"! (36)

F 172
(uN |uM|) 2

Note that 6 > 6. If we take A, =2.35 A, H=500 Oe,
and u,=4.98X107° A2 appropriate for niobium, the
critical angles are 8 =0.1489° and 6, =0.1533°, and the
critical angle splitting is (6, —8.)=0.0044°. As 6~ and
0% are small for thermal or cold neutrons, the critical an-
gle splitting for spin-up and spin-down neutrons can be
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written as

9__0+_ }‘nIuMI ¢ )"nHO
¢ c - ,n_l/2 (Nb )1/2 ’

(37)
27ru/?

so (0, —6.) is proportional to the neutron’s wavelength
A, as well as the applied magnetic field H.

Figure 2 shows R 7(8) (dash-dot curve) and R ~(6)
(solid curve) for three different choices of the penetration
depth A: (a) 400 A, (b) 1000 A, and (c) 1600 A, with
A,=2.35 A, H=500 Oe, and uy =4.98X 107> A2 The
double-dot-dashed line is the reflectivity for H =0. First
consider the curves for R *(0). As 6 exceeds 0,7, R *(6)
decreases monotonically, and the larger A is, the slower
R 7(8) decreases above 6. This is the type of behavior
expected based on previous (numerical) results.

The behavior of R ~(60), on the other hand, is surpris-
ing, as it does not always decrease monotonically as a
function of 6 above 6,. For example, at A=1000 A,
R 7 (0) almost dips to zero immediately above 6, [Fig.
2(b)]. In other words, there is nearly total transmission.
Beyond this dip, R ~(6) is slightly above R *(8),
reflecting the fact that the asymptotic value of u ~(x) is
above that of u ¥(x) by 2|uMl (Fig. 1). As 0 continues to
increase, R ~(0) and R () merge into one curve as
2luy, | becomes small compared to the kinetic energy
term controlled by k,=ksinf. Thus these spin-
dependent effects are most discernible in the vicinity of
the critical angles.

1.0 |

0.5 r

1.0 |

1.0 |

R*(6,A)

0.5 | ~. .

1 " " 1 " " i
0.150 0.155 0.160

6 (degree)

8.145

FIG. 2. Reflectivity calculated from Eq. (31) for spin-up
[R*(6,\) (dash-dot curves)] and spin-down [R ~(6,A) (solid
curves)] neutrons, as a function of 0, for three different values of
the magnetic penetration depth A. Parameters used for plotting
are A,=2.35 A, H=500 Oe, and uy=4.98X10"° A~ (for
niobium). A=400 A (a), 1000 A (b), and 1600 A (c). The
double-dot-dashed line in (a) is the reflectivity for H =0.
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B. Anomalous resonant transmission in R ~(6,A)

The “dip” in the reflectivity profile for spin-down neu-
trons shown in Fig. 2(b) was an unexpected feature re-
vealed by the analytical expression for R(6,A). In actual
reflectivity measurements from thin films we typically see
oscillatory behavior in R(8) due to interference from the
waves scattered from the front and back surfaces of the
sample. In the present case, however, the sample is as-
sumed to be infinitely thick and hence this structure in
R 7(6) must have a different origin. This phenomenon
appears to be related to the scattering potential, as we
have not seen it discussed in other 1D quantum-
mechanical scattering problems in the literature. This A-
dependent resonance effect is worth studying because it
has the potential to be developed into a sensitive way to
measure A. In the following paragraphs we first give
some intuitive physical arguments as to the origin of this
anomalous transmission effect. We also demonstrate that
the reflectivity coefficient given by Eq. (31) can indeed
vanish, and we derive the resonant conditions for H and
A. We then present a simplified calculation which
demonstrates the essential physics behind this anomalous
resonant transmission, and finally discuss a possible way
to experimentally detect the effect.

To get an understanding of how this resonant transmis-
sion may happen, let us do the calculation as it would be
done numerically, that is, we divide the sample into thin
layers and assign to each layer the appropriate average
scattering potential. Then the scattering potential for
spin-down neutrons shown in Fig. 1(b) is transformed to a
stair potential as shown in Fig. 3. If we let the incoming
neutron’s energy be higher than the asymptotic value of
the potential, then at each interface, as well as the front
surface, the neutron wave is partially reflected and par-
tially transmitted. If the waves reflected from all the in-
terfaces happen to have the correct phases and ampli-
tudes so that they add up destructively in the x <O re-
gion, then we might, in principle, have a suppressed
reflectivity, or even have r =0 where the neutron wave
would be totally transmitted. The phase and amplitude
of the reflected wave from each interface depends on both
the potential difference between the two adjacent layers
as well as the distance from the interface to the front sur-
face. As the layer thickness approaches zero, this means

u (x)
\

FIG. 3. Stair potential as an approximation to u (x) for spin-
down neutrons.
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that the potential curve would have to have a specific
shape and magnitude in order to produce such destruc-
tive interference, and we will find that H and A need to
satisfy certain stringent conditions in order for this effect
to occur.

To study the anomalous resonant transmission analyti-
cally, let us consider Eq. (31) in the « range where

O<kA<<1. (38)

For the magnetic-field range we are considering and for
most materials Eq. (38) guarantees that

0<-X «1 R (39)
xC
where
kye=(uy—upy )12 (40)

because k,A>1. For example, for uy=4.98X107°
A™2, H=500 Oe, and A=300 A we have k, A=2.1>1.
We therefore expand both the numerator and the denom-
inator of r in Eq. (30) to first order in kA and «/k,.. Us-
ing

k,=(kZ+&)\?=k, +0(*/k2), (41a)
(ky FrOOM1—2ikA) =k A—(£142ik  A)kA+O(k*A?)

(41b)

oF 1(1—=2iKkA; M%) =oF | (1;A %0, ) — 20 6F ) 1 (1; A0 KA
+0(k*\?) (410)

oF 1(2=2ikA; A%, )= oF 1 (2;A%up, ) — 20 oF | 1 (2;A %10 JKA
+0(K*A?) , (41d)

and neglecting terms ~ O («2/k2,) or ~O(k?A?), we find
that Eq. (30a) can be written in a simpler form:

- (f1Fif))—(f3+if4)xA
N (f1—if )+ (f3—ifrk ’

where f, f,, f3, and f, are real functions defined by

r (42)

F1=ko AoF (1A uy,) (43a)
f2=—NupoF (230 %uy) (43b)
F3=oF (A ) +20%u,,0F ) 1 (20 0y,) (43c)
Fa=2k AoF (1 2y ) FoF (50 2u,)] . (43d)

These four dimensionless functions are independent of 6
and the neutron wavelength A,. Rather, they are deter-
mined only by the shape and magnitude of the potential
through parameters such as uy, u,;, and A. We remark
that the (F, functions in Egs. (43) may be replaced by
Bessel functions via Egs. (25), and noting that J,(z) is os-
cillatory while I,(z) is monotonic we may anticipate an
oscillatory dependence of r on A for spin-down neutrons
(upr <0), and thus the possibility of total transmission.

In the k range specified by Eq. (38) the reflectivity be-
comes
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R = (1= F3KA+(f, = f4r)?
T f AR (fyF f kM)

Hence a sufficient condition for a total transmission to
occur is given by the following two equations:

(44)

f1=S3KkA, (45)
fr=fakh, (46)
together with Eq. (38). Eliminating kA we find
fi_fe
O<—="<1. (47)
fi fa

From the above equation we see that it is the shape of the
potential curve that determines whether this total
transmission may happen, independent of the wave vec-
tor k, or angle 6. The value of k, (and 6) at which this
total transmission will occur can be calculated from the
result of Eq. (47) by using kA= f, /f3, or more explicitly

2
?ffi tuy—ty - (48)

We may use a graphical method to obtain the solutions
of Eq. (47). Figure 4 is a plot of f,/f; and f,/f, as a
function of A for spin-down neutrons, again using
H=500 Oc and uy=4.98X107° A™% The dash-dot
curve represents f;/f3, while the solid line is f,/f,;
they do indeed cross, and several crossing points have
values positive and much smaller than 1. We tabulate the
first four such crossings in Table I.

We may also obtain an approximate expression for the
solutions by noting in Fig. 4 that f,/f; is not as flat as
f>/f4 at the intersections tabulated in Table I. There-
fore, Eq. (47) can be approximated by

1
——=0 (49)
/3

k2=

X

10 [

£/ and fo/f,
coe
N
~N
N\
|
T
J
7
V
/
/

NN
T )

i
|
!
!
!
!
1

!
!
!
!
!

-10 HI .
0 1000

4000

2000 3000 5000

A (R)

FIG. 4. Plot of the dimensionless functions f,/f; (dash-dot
line) and f,/f4 (solid line). Parameters A,, H, and uy used are
the same as those in Fig. 2. The intersections which have values
much smaller than 1 yield solutions of A at which total
transmission occurs. Four such crossings are in the plot. These
A’s and the corresponding functional values are listed in Table I.
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TABLE 1. Solutions of Eq. (47).

A F1/f3=f2/fs
1002.326 0.0545
2287.469 0.0540
3584.076 0.0544
4883.646 0.0548

or simply f,=0. From Eq. (43a) we get
oF 1 (1;A%u,,)=0 . (50)

For spin-down neutrons u,, <0, so from Eq. (25b) we
have

oF 1 (L A%u, ) =520 uy,|17?) . (51)
Hence the condition for the total transmission becomes
Jol2AM4mcH ) ?]=0 , (52)

so that to a good approximation 2A(4mcH )!/? needs to be
a root of the zeroth-order Bessel function:

2M(4mcH ) /?=2.4048, 5.5201, 8.6537, 11.7915, - -- .
(53)

We emphasize that here it is the shape of the potential
curve that determines whether total transmission may
occur.

A better understanding of the physical origin of this
potential-profile-dependent, single-dip resonant transmis-
sion may be obtained by examining a much simpler po-
tential profile which consists of only two steps:

0, x<0
u(x)=lu;, 0=<x<a (54)
u, , x=a

as shown in Fig. 5. Define

=+ (kg =)' (55)
and

Ky=+(kZ—u,)'?. (56)
The reflectivity can be calculated in the usual way by

solving the Schrodinger equation in the three regions and

u(x)

i

u, r

v
x

0 a

FIG. 5. The two-step potential defined in Eq. (54).
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matching the boundary conditions. The results are
(kg =Ky )y Fiy) + (k6 — Ky )k, + Ky Jexp(2ik,a)
"k, Ky )k )+ (kg — k) (K, — Ky Jexpl2in,a )

(57)

and
Kk, —K,)*cos (ki@ )+ (k3 — kK, )?sin’(ka )
K3k, + 1) cos?(ic,a) + (k3 + ko iy ) sin?(kya)

(58)

R=|r|*=

Taking k2> u,; and k2> u,, we have two sets of condi-
tions for total transmission (R =0):

k, =K,

Kia=nw, n=0,1,2,... (59)
or

Ki=kyk,

kia=(n+Lmwr, n=0,1,2,.... (60)
The first set implies

u,=0

kl=u,+(nw/a)*, n=0,1,2,..., (61)

which is the ordinary resonant transmission for a square-
potential barrier. Notice that Eq. (61) does not put any
constraints on u#; or a. In particular, there is no con-
straint on the sign of u, i.e., whether it is repulsive or at-
tractive. As 6 (and k,) varies, the resonance condition is
met periodically. This is the k,-dependent resonance we
usually see, as in the reflectivity from a thin film. The
second set of conditions can be rewritten as

(uy—ulu 12
a|—=—""L| =(+lm, n=0,1,2,... (62)
2u1_u2
and
u
= (63)
(2u1—u2)

Notice that Eq. (62) is a condition on the shape of the po-
tential, independent of k,. The total transmission effect
occurs only when

u, <u,<2u,; (64)

and the first potential step has the correct width a, and
only at a specific value of k, given by Eq. (63). Hence
there is only a single dip in R (9).

The physics behind these two sets of resonance condi-
tions [Egs. (59) and Egs. (60)] has a simple and unified
scheme: Total transmission occurs when the waves
reflected from the front surface x =0 and the interface
x =a add up completely destructively in the x <O region,
or in other words, when they have equal amplitudes but
opposite phase. Let us consider the square potential first.
Since the potential jumps at x =0 and x =a are equal in
absolute value but differ by a sign, the two reflected
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waves have the same amplitude but are out of phase.
Thus the extra phase change of the wave reflected from
x =a, due to traveling a longer distance 2a, must equal
2n, i.e., k{(2a)=2nm. This is the resonance condition
Eq. (59). In the second case, when u, > u,, the potential
jumps at x =0, and x =a have the same sign, so there is
no phase change upon being reflected, and thus the phase
change due to travelling a longer distance 2a must be
(2n +1)m, i.e., k;(2a)=(2n +1)7. This is the second half
of the resonance condition Eq. (60). The equal ampli-
tude condition requires, in reference to Eq. (32), that

k. —K;
kx+K1 K1+K2 ’

KT

(65)

which gives k3=k_«,, the first half of the resonance con-
dition Eq. (60). In summary, there are two types of reso-
nant transmission: the conventional k,-oscillatory type,
and the potential-profile-dependent and single-dip type.
Both have the same physical origin—the reflected waves
add up destructively.

C. Possible detection of the anomalous transmission
with ultracold neutrons

We return to Eq. (48) to determine the angular
difference between the total transmission angle 6,,, and
the critical angle 6, . From Eq. (48) we have

2
fi
kf-kfcz l—f“;): (66)

When the total transmission condition [Eq. (47)] is met,
f1/f5 is much smaller than 1, and therefore the right-
hand side of Eq. (66) is very small and 6,, is very close to
0. . Then Eq. (66) can be rewritten as

2

. A S
sinf,, —sinf, = 477_;“ ﬁ , (67)
where we note that the right-hand side is proportional to
the neutron wavelength. Taking H =500 Oe,

uy=4.98X 1073 A_Z, and A=1002 A, where the first to-
tal transmission occurs (Table I), we have f /f3=0.0545
and k,, =(uy~+|uy|)!72=0.007 15 A™', which gives

sin@, —sinf, =3.3X 107 %%, (68)
or
6, —60. =(2X10"%/cosf; A, , (69)

where the angle is in degrees. The very cold to ultracold
neutron regime will make this angular difference easier to
resolve experimentally. The resonance condition may be
tuned by varying the magnetic penetration depth (with
temperature) or by varying the applied field.

D. Oscillatory dependence of R “(6,A) on A

Since the occurrence of the total transmission depends
on A quasiperiodically, as indicated in Eq. (53), the A
dependence of R ~(6,A) at 6 6, must also be quasi-
periodic. Figure 6 plots R " (6,A) (solid line) as a func-
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tion of A at three different values of 6. The dash-dot lines
are R T(6,A) plotted just for comparison, and again we
have taken A,=2.35 A, H=500 Oe, and uy=4.98X
1075 A™2 At 6=0.1534° [Fig. 6(@)], R (6,A)
clearly shows an oscillatory dependence on A. At
0=0.1550°, on the other hand, R ~(6,A) is monotonic.
This is less than 0.002° from 6, (0.1533°), which is

beyond the angular resolution available currently. 312

E. Thick-film case

The above analytic results have been for a supercon-
ducting system which is assumed infinite in thickness,
and the question naturally arises whether these effects
survive and might be observable in actual materials. We
have therefore investigated the analytic expression of the
reflectivity from a thick superconducting film. In the
case of a free-standing film with identical surfaces on
both sides, the reflectivity R *(6,1) is simply related to
R*(6,1) by

R0, =2R0A)
’ 1+R*(6,1)

provided that the thickness of the film, d, is so large that
d >>A and the oscillatory terms in R due to the film
thickness are averaged, which is practical due to finite in-
strumental resolution. We will prove this result in Sec.
III. From Eq. (70) we observe that all the interesting
features of R ~(0,A)—the dip, the total transmission,

(70)

=<
©)
H
s
0 1 . 1 1
1.0 T T T T L
r.
! ©=0.1550° |
0.5 PN .
T ]
O I -e U R S S S T S S S S S S S | — n ]
0 000 2000 3000 4000 5000
A (A)

FIG. 6. Reflectivity calculated from Eq. (31) for spin-up
[R*(6,1) (dash-dot curves)] and spin-down [R ~(6,A) (solid
curves)] neutrons, as a function of A, for three different values of
6. The parameters A,, H, and uy used are the same as those in
Fig. 2. 6=0.1534° (a), 0.1535° (b), and 0.1550° (c).
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and the oscillatory dependence on A-—persist in
R 7 (6,1), and therefore no information is lost in using a
thick film. Indeed, from a practical point of view use of a
thick film allows one to measure the transmission
coefficient T75(0,A)=1—R*(6,A). The advantage is that
the anomalous peak in T ~(6,A) [corresponding to the
dip in R 7(8,A)] arises sharply from zero when 6 in-
creases above 8, , and hence this may provide a superior
signal-to-background ratio.

1v. R*(6,1) FOR A THICK FILM

When we consider a sample of finite thickness, we have
to consider multiple reflections between the two boun-
daries, allowing the amplitude of the reflected and
transmitted wave to change on each ‘bounce”. For-
tunately, the multiple reflections of the incoming wave
compose a geometric series!> which may be easily han-
dled mathematically, and the sum of the series is the
resultant reflectivity we desire.

To demonstrate the principle of this method, let us
rederive the reflectivity of the two-step potential (Fig. 5),
which we obtained earlier [Eq. (54)] as an exact solution
of the Schrodinger equation by matching boundary con-
ditions. Define «, as in Eq. (55) and «, as in Eq. (56), and
let (r,t;), (ry,t,), and (r;,t;) be the reflection and
transmission amplitudes for single interfaces, with the x-
axis origin defined as in Fig. 7(a) and Fig. 7(b), respective-
ly. Then the multiple reflection diagram can be schemati-
cally shown as in Fig. 7(c). Summing up all the
reflections on the x <O side, we have

+ 0
r=ry+t,ryt,exp(2ika) 3, [ryryexp(2ic,a)]”
n=0
ri+(tt,—ryry)ryexp(2ik,a)
= - . (71)
1—r,ryexp(2ik,a)
We know that
kx Ky 2kx
==, t,=—mm N 72
R (722)
K —k, 2K,
== f=—, 72b
"2 Ktk T P Ktk (72b)
Ky —Ky 2K1
=—t—2 =l 72
"3 Kytr, 3 K tKy (72¢)
We can rearrange them to obtain
Fo=—ry, (73a)
tit,—rir,=1, (73b)

and finally

_ rytriexp(2ika)

" 1+r,r;exp(2ik,a)
(k, —r K+ K,y)+ (6 — Ky )k +q)exp(2ik,a)
(ky 1)) e; +1y) (0] — 1y )k, — iy Jexp(2inia)
(74)
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which is identical to Eq. (57).

There are two points we would like to make about this
method. First, if we know the reflection and transmission
amplitudes at the separate boundaries, we can construct
the reflection (and similarly transmission) amplitude for
the composite structure by summing up all the multiple
reflections, provided that between the boundaries there
exists only a constant potential and hence a plane-wave
solution. Secondly, (r,,t,) is the time-reversal solution of
(ry,t,) and therefore is not independent of (r,¢,), and in
fact they can be eliminated from the final expression.

This geometric series method of calculating reflectivity
can be extended to the case where two boundary

(b)

tgt exp(2i K‘a)

t|r§|:2 t, exp(4ixa)

0 a X

FIG. 7. Reflection and transmission of a plane wave at the
first (a) and second (b) boundary, and the schematic diagram of
multiple reflections (c). (r,t;), (ry,t;), and (r3,t;) are the
reflection and transmission amplitudes obtained with respect to
the x-axis origin chosen as in (a) and (b). In (c) the reflection
amplitues on the x <0 side compose a geometric series and the
sum of the series is identical to the exact solution. The attenua-
tion factor of the series is r,r;exp(2ik;a) due to “bouncing”
once from each boundary and traveling a distance 2a with a
wave vector K.
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“blocks” are connected by a constant potential, in con-
tract to two boundary ‘““planes” in the previous example.
The boundary blocks can be treated like black boxes
which may consist of complicated layered structures such
as a multilayer or an exponential change in scattering po-
tential, etc. All we need to know about these ‘black-
box” blocks is their reflection and transmission ampli-
tudes. We assume that the reflection and transmission
amplitudes of the boundary blocks are known by other
means and given a priori, and use them to express the
resultant reflectivity of the composite structure. Figure 8
shows two such boundary blocks. L, and L, indicate
block thickness. We do not have to be concerned about
the details of the potential functions u (x) and u'(x) for
the time being as long as we know that (7,¢,) and (r;,¢;)
are obtained with respect to the x-axis origin chosen as in
Fig. 8(a) and Fig. 8(b), respectively, and these amplitudes
are indeed known a priori. The multiple reflection dia-
gram then is shown as in Fig. 9. We denote the film
thickness L, +a +L, by d and find that after the second
reflection the attenuation factor for each subsequent
reflection on the x <O side is r,7r;exp(2ik;d). We thus
have

+ o0
r=ry+t rytexp2icd) Y, [ryriexp(2ix,d)]”
n=0
ryt(tt,—rry)riexp(2ic,d)

= . 75
1—r,yrzexp(2ik,d) 75

Since (7,¢,) and (r,,t,) are not independent of each oth-
er, we can express them as two independent variables

(a,B):1
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v

-L, 0 X
(b)

FIG. 8. Reflection and transmisson of a plane wave at the
first (a) and the second (b) boundary blocks, rather than bound-
ary planes. (r;,t,) and (r3,t;) are the reflection and transmis-

%
r1=——BT , (76a) sion amplitudes obtained with respect to the x-axis origin
a chosen as in (a) and (b). Constant potentials and plane wave
1 luti s d outside the blocks.
tl:_:(lalz—lﬁlz) , (76b) solutions are assumed outsiae the blocks
a
B
=F 76 .
"2 a*’ (76¢) Defining the real number ¢ as exp(ip)=a/a*, we have
fn=—1 (76d) o
a ry+riexp(2ik,d +igp) (78)
r=
Then we have 1+ririexp(2ic,d +ig)
a
Lity,—rir,=——. (77)
LI LE - and
J
= Iri 2+ 17312 +2 Ref{rfry}cos(n,d +@/2)—2Im{rir,y}sin(k,d +¢/2) -

This equation is an exact result and may have various
applications in reflectivity calculations. Our supercon-
ducting film case, which we will discuss shortly, is only a
special example. Another example is the two-step poten-
tial including interfacial roughness. The interfacial
roughness is commonly modeled by a smooth function
connecting the two constant potentials, for example error

1+ 12lr312+2 Re{rir;}cos(ic;d +@/2)—2Im{riry)sin(k,d +¢/2)

function or hyperbolic tangent function (or equivalently a
Fermi function). The error function has been very popu-
lar because in the kinematic limit the reflectivity is simply
related to the Fourier transform of the potential’s first
derivative and the error function’s first derivative is the
Gaussian function, and its Fourier transform is simple to
handle. Now in view of Eq. (79), the hyperbolic tangent
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u=0 y u'(x) u=u,
1 —
r, +—|
fL")]
t.r.t,exp(2ix,d) d
b *1 5 1 expli| (2d+Lra)]
d+L,)]
2
t, 13 texp(dix
X
L »
0 d=Lya+l,

FIG. 9. Schematic diagram of multiple reflections from two
boundary blocks. The attenuation factor for the multiple
reflections on the x <0 side is r,r;exp(2ik,d), where
d=L,+a+L, is the thickness of the film.

function is very useful because the exact solution of the
Schrodinger equation with a hyperbolic tangent potential
is known. !® Therefore, we may have a simple analytic ex-
pression for the reflectivity for the smeared-two-step po-
tential, which is valid not only in the kinematic limit but
throughout the total reflection region. Moreover, the
geometric series method can be extended to many black-
box blocks rather than being limited by two when it is ap-
plied recursively. For example, it is readily applicable to
multilayer systems with interfacial roughness.

Now let us consider Eq. (79) in the thick-film limit.
When d in Eq. (79) is very large the oscillatory terms
vary rapidly with angle 6, and over the finite angular ac-
ceptance of the reflectometer instrumental resolution the
reflectivity is averaged to!”

_ R1+R3_2R1R3
1—R R,

(80)

To apply this general formula to our thick supercon-
ducting film case, we first examine our boundary blocks.
For the first block, when L, >>A, the transmission ampli-
tude becomes [Eq. (24) and Eq. (30b)]

toFl[l—Zl'Kl;A.zuMexp( —Ll/}\’)]
—i[14+0(exp(—L,/A)], (1)

so we can safely replace it by ¢ itself in the thick-film lim-
it. In this manner we have successfully constructed our
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first boundary block. Taking the second boundary block
as the mirror image of the first, we find that

2R%(6,1)
1+R*(6,A)

for a free-standing thick superconducting film.

If the film is grown on a substrate, we can still use the
exact solution R¥(6,A) to express R;, and the only
change is in uy. However, the total transmission for the
two boundary blocks does not occur at the same angle 6
because 6, (and hence 6,,) are quite different. We em-
phasize that the mirror symmetry of the film and the sur-
face quality are important if the anomalous transmission
is to be observed experimentally.

R*,0)= (82)

V. OTHER APPLICATIONS OF R *(6,A) AND R i( 0,1)

Even though we have limited our detailed discussions
to the magnetic penetration depth A in superconductors,
the exact solution!® R *(6,1) can be applied to other sys-
tems where the scattering potential has an exponential
dependence with distance in the surface region. For ex-
ample, in the problem of the magnetization at the surface
of a ferromagnet, if at the surface layer the magnetization
differs from the bulk by an amount Au,, the penetration
of the disturbance at a distance z from the surface is

Au(z)=Ap exp(—z /&), (83)

where £ is a magnetic coherence length, and both Ay,
and £ are temperature dependent. Equations (31) and
(82) can be immediately applied to this system, with £ re-
placing A. Indeed, polarized neutron reflectometry has
been shown to be a sensitive probe to determine the tem-
perature dependence of the magnetization at the surface
of ferromagnets. !’
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FIG. 7. Reflection and transmission of a plane wave at the
first (a) and second (b) boundary, and the schematic diagram of
multiple reflections (c). (ry,#), (r;,1;), and (rs,t;) are the
reflection and transmission amplitudes obtained with respect to
the x-axis origin chosen as in (a) and (b). In (c) the reflection
amplitues on the x <0 side compose a geometric series and the
sum of the series is identical to the exact solution. The attenua-
tion factor of the series is »,r;exp(2ik,a) due to “bouncing”
once from each boundary and traveling a distance 2a with a
wave vector K.
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FIG. 8. Reflection and transmisson of a plane wave at the
first (a) and the second (b) boundary blocks, rather than bound-
ary planes. (r,t;) and (r;,;) are the reflection and transmis-
sion amplitudes obtained with respect to the x-axis origin
chosen as in (a) and (b). Constant potentials and plane wave
solutions are assumed outside the blocks.
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FIG. 9. Schematic diagram of multiple reflections from two
boundary blocks. The attenuation factor for the multiple
reflections on the x <0 side is r,ryexp(2ix,d), where
d=L,+a+L, is the thickness of the film.



